Unprecedented X-ray View of Supernova Remains

The destructive results of a powerful supernova explosion reveal themselves in a delicate tapestry of X-ray light, as seen in this image from NASA’s Chandra X-Ray Observatory and the European Space Agency’s XMM-Newton.

The image shows the remains of a supernova that would have been witnessed on Earth about 3,700 years ago. The remnant is called Puppis A, and is around 7,000 light years away and about 10 light years across. This image provides the most complete and detailed X-ray view of Puppis A ever obtained, made by combining a mosaic of different Chandra and XMM-Newton observations. Low-energy X-rays are shown in red, medium-energy X-rays are in green and high energy X-rays are colored blue.

These observations act as a probe of the gas surrounding Puppis A, known as the interstellar medium. The complex appearance of the remnant shows that Puppis A is expanding into an interstellar medium that probably has a knotty structure.

Supernova explosions forge the heavy elements that can provide the raw material from which future generations of stars and planets will form. Studying how supernova remnants expand into the galaxy and interact with other material provides critical clues into our own origins.

A paper describing these results was published in the July 2013 issue of Astronomy and Astrophysics and is available online. The first author is Gloria Dubner from the Instituto de Astronomía y Física del Espacio in Buenos Aires in Argentina.

Image credit: NASA/CXC/IAFE/G.Dubner et al & ESA/XMM-Newton

› View large image
› Chandra on Flickr via NASA http://ift.tt/YwX9m9

Flying Through an Aurora

European Space Agency astronaut Alexander Gerst posted this photograph taken from the International Space Station to social media on Aug. 29, 2014, writing, “words can’t describe how it feels flying through an #aurora. I wouldn’t even know where to begin….”

Crewmembers on the space station photograph the Earth from their unique point of view located 200 miles above the surface. Photographs record how the planet is changing over time, from human-caused changes like urban growth and reservoir construction, to natural dynamic events such as hurricanes, floods and volcanic eruptions. Crewmembers have been photographing Earth from space since the early Mercury missions beginning in 1961. The continuous images taken from the space station ensure this record remains unbroken.

On Tuesday, Sept. 9 aboard the space station, cosmonaut Max Suraev of Roscosmos takes the helm when Expedition 40 Commander Steve Swanson hands over control during a Change of Command Ceremony at 5:15 p.m. EDT. Suraev will lead Expedition 41 and stay in orbit until November with Gerst and NASA astronaut Reid Wiseman. Soyuz Commander Alexander Skvortsov, Swanson and Flight Engineer Oleg Artemyev will complete their mission Wednesday, Sept. 10 at 7:01 p.m. when they undock in their Soyuz TMA-12M spacecraft from the Poisk docking compartment for a parachute-assisted landing on the steppe of Kazakhstan a little less than 3.5 hours later.

Image Credit: NASA/ESA/Alexander Gerst via NASA http://ift.tt/1Av5ZfK

Orion’s First Crew Module Complete

NASA’s first completed Orion crew module sits atop its service module at the Neal Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida. The crew and service module will be transferred together on Wednesday to another facility for fueling, before moving again for the installation of the launch abort system. At that point, the spacecraft will be complete and ready to stack on top of the Delta IV Heavy rocket that will carry it into space on its first flight in December. For that flight, Exploration Flight Test-1, Orion will travel 3,600 miles above the Earth – farther than any spacecraft built to carry people has traveled in more than 40 years – and return home at speeds of 20,000 miles per hour, while enduring temperatures near 4,000 degrees Fahrenheit. 

Image Credit: NASA/Rad Sinyak via NASA http://ift.tt/1CJrrBE

Hubble Sees Spiral in Serpens

This new NASA/ESA Hubble Space Telescope image shows a beautiful spiral galaxy known as PGC 54493, located in the constellation of Serpens (The Serpent). This galaxy is part of a galaxy cluster that has been studied by astronomers exploring an intriguing phenomenon known as weak gravitational lensing.

This effect, caused by the uneven distribution of matter (including dark matter) throughout the Universe, has been explored via surveys such as the Hubble Medium Deep Survey. Dark matter is one of the great mysteries in cosmology. It behaves very differently from ordinary matter as it does not emit or absorb light or other forms of electromagnetic energy — hence the term “dark.”

Even though we cannot observe dark matter directly, we know it exists. One prominent piece of evidence for the existence of this mysterious matter is known as the “galaxy rotation problem.” Galaxies rotate at such speeds and in such a way that ordinary matter alone — the stuff we see — would not be able to hold them together. The amount of mass that is “missing” visibly is dark matter, which is thought to make up some 27 percent of the total contents of the Universe, with dark energy and normal matter making up the rest. PGC 55493 has been studied in connection with an effect known as cosmic shearing. This is a weak gravitational lensing effect that creates tiny distortions in images of distant galaxies.

 

European Space Agency

ESA/Hubble & NASA, Acknowledgement: Judy Schmidt via NASA http://ift.tt/1pSFHn9